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Abstract: Near infrared (NIR) spectroscopy spectra can be converted mathematically to precise quantitative information 
of chemical and physical nature by multivariate calibration. This makes NIR analysis useful for a variety of “difficult” 
sample types (powders, slurries), more or less without any sample preparation. 

The paper emphasizes the importance of using prior knowledge for spectral preprocessing of spectral data prior to the 
linear multivariate calibration modelling. Two new preprocessing methods are presented: extended multiplicative signal 
correction (EMSC) for elimination of uncontrollable path length or scattering effects, and spectral interference 
subtraction (SIS) for elimination of known spectral interferences. 

Determination of toluene in mixtures with benzene and xylene from NIR spectra with gross simulated light scattering 
effects is used for illustration. 
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Introduction 

Knowledge-driven versus data-driven modelling 
in analytical chemistry 
Results from chemical analysis must be selec- 
tive. Traditionally, selectivity problems in 
terms of chemical or physical interferences 
had to be removed by filtering or standardiz- 
ation of the samples prior to measurement. 
With multichannel instruments and multi- 
variate calibration software the selectivity en- 
hancement can instead be done mathemat- 
ically. 

For effective multivariate calibration model- 
ling it is important to combine a priori assump- 
tions (“prior knowledge”) and empirical data 
in a balanced way. 

Classical analytical chemistry has focused 
very much on prior assumed knowledge. 
“Hard modelling” (mathematical modelling 
based on explicit causal and statistical assump- 
tions) is used for extracting information from 
data. An example of this is the modelling of 
spectroscopic measurements from chemical 
mixtures. These are often modelled as linear 
combinations of known pure constituents. 

Such modelling can only be used in systems 
where this assumed knowledge is adequate, 
e.g. where there are no unidentified con- 
stituents, constituent interactions, temperature 
effects, light scattering variations, etc. This 
knowledge-driven modelling has led to a 
tendency of academic over-simplification 
(simple transparent solutions of a few well 
known constituents), leaving many practical 
analytical problems unsolved in the fields of 
food and agriculture, biology, process industry 
and pharmacy. 

On the other hand, in analytical chemistry 
based on quantitative chemometric modelling, 
empirical measurements are used instead of 
causal assumptions. “Soft modelling” (math- 
ematical modelling with as few statistical and 
causal assumptions as possible) is used for infor- 
mation extraction. Background knowledge is 
only used mentally, for design of experiments 
to obtain the empirical data, as well as in the 
graphical interpretation of the results. But 
knowledge about, for example, pure con- 
stituents is not used as an integral part of the 
mathematical modelling of the mixture data 
obtained. This data-driven modelling allows 
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reliable quantitative analysis in systems where 
classical analysis has failed. But it makes the 
calibration process unnecessarily costly, by 
requiring the empirical data to carry all the 
information required to make the necessary 
calibration models. 

The present paper assumes a flexible inter- 
mediate between hard modelling and soft 
modelling: a priori knowledge is applied in 
“hard” modelling during preprocessing, to 
simplify the structure in the spectral data. 
“Soft” modelling is then used for cleaning up 
empirically what the causal modelling could 
not explain. The goal is to obtain maximal 
understanding and maximal predictive reliabil- 
ity and relevance at minimum experimental 
and data analytic costs. 

The paper presents two new spectral prepro- 
cessing methods for improving the multivariate 
calibration of multichannel analytical instru- 
ments based on spectroscopic background 
knowledge: extended multiplicative signal 
correction (EMSC) is designed to improve the 
separation of light scattering and light absorb- 

ance, and spectral interference subtraction 
(SIS) for elimination of interferences with 
known spectral effects. Conventional projec- 
tion on latent structures regression (PLSR) is 
then used for the subsequent empirical “soft 
modelling” calibration. Near infrared (NIR) 
data are used for illustrating their application. 

Near infrared spectroscopy 
NIR spectroscopy [I], operating within the 

wavelength range 900-2600 nm, is a relatively 
new analytical technique with a high potential 
for pharmaceutical and biomedical analysis. 
With little or no sample preparation it can 
provide precise chemical and physical charac- 
terization of a variety of “difficult” sample 
types - powders and intact tablets, intact 
biological tissue, slurries, suspensions and 
emulsions as well as turbid or clear solutions - 
and even gases. The method even has interest- 
ing potentials for in-vivo applications. 

NIR spectroscopy can also be used effec- 
tively for high-speed qualitative control pur- 
poses, to check that raw materials, processes or 
products have spectra within systematic ranges 
corresponding to set quality specifications 
(multivariate control charting). 

Most organic molecules as well as water and 
many inorganic compounds display useful NIR 
absorbance patterns. These absorbances are 
overtones and combination bands from funda- 

mental molecular vibration bands in the IR 
region. The IR absorbances themselves are 
often too strong to allow simple, representative 
analysis of complex samples. But the NIR 
bands are sufficiently weakened to allow the 
light to penetrate anywhere from a few milli- 
metres to a couple of centimetres through the 
samples. The NIR measurements can be taken 
as reflectance or transmittance, depending on 
what is most practical. 

The development of the highly successful 
NIR technology has been application driven 
[l], rather than theory driven. NIR analysis 
relies on empirical statistical estimation of the 
mathematical transfer functions required to 
convert spectral measurements into chemical 
information. Thus it violates the conventional, 
misleading (and often subconscious?) aca- 
demic desire for one-to-one correspondence 
between data and fundamental information. 

To wring highly selective and precise results 
from highly non-selective and confusing 
measurement may for traditional analytical 
chemists seem like unreliable “black magic” - 
almost like cheating. To make things worse, 
the prime fields of NIR application till now, 
food and feeds analysis, may have had a rather 
low standing on the academic status ladder. 
Finally, since NIR instruments require both 
multivariate calibration chemometrics and 
spectroscopic insight, this multidisciplinary 
technique may fall between the traditionally 
specialized academic chairs. 

However, the NIR technique is now well 
understood theoretically, and has proven to 
work well in many practical applications where 
other analytical methods like IR or UV spec- 
troscopy fail. While it is very popular in 
industry, it is still largely ignored in many 
universities. 

The purpose of the present paper is to 
illustrate that there is solid spectroscopic 
rationale behind the multivariate calibration 
techniques in NIR spectroscopy. This will be 
done by demonstrating that apparently confus- 
ing and wildly non-selective data can be made 
selective by either applying background knowl- 
edge through preprocessing, or by PLSR, or 
(preferably) by a combination of these. 

A somewhat extreme example is presently 
used, in order to illustrate two aspects: (1) the 
power of multichannel NIR and quantitative 
chemometrics, compared with traditional uni- 
variate calibration; and (2) the importance of 
spectral preprocessing. 
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The example concerns calibration for one 
constituent in mixtures of two other con- 
stituents with very similar NIR spectra. The 
NIR spectra display gross uncontrolled path 
length and baseline variations, like the ones 
found when the turbidity or path length 
changes dramatically. Toluene, whose NIR 
spectrum is similar to a mixture of benzene and 
xylene, is considered the analyte to be deter- 
mined from NIR spectra, in future unknown 
samples containing unknown levels of the two 
interferents benzene and xylene. In this case 
we know the spectra of the three pure solvents. 
So under ideal conditions one could resolve 
each future mixture’s absorbance spectrum 
into these three constituent spectra. But the 
constituents do not have quite the same spectra 
in mixture as in pure form; various interactions 
may be expected. Likewise, the present data 
set has been modified to include major base- 
line and path length effects, to simulate major 
uncontrolled light scattering variations and/or 
path length variations. The knowledge about 
the three constituents’ pure spectra will be 
used for preprocessing. 

Calibration theory 
The calibration theory for NIR instruments 

and other multichannel non-selective chemo- 
metric sensors is described in detail, e.g. by 
Martens and Naes [2]. 

The goal of the calibration of NIR instru- 
ments is to find the transfer function f() that 
allows us to convert a multichannel input 
spectrum zi = {zik,k = 1,2,. . . ,K} (say, K = 
100 NIR wavelengths of a pharmaceutical 
sample i), into sample quality yi (say, content 
of a certain chemical constituent): 

Yi = f(zJ- (I) 

NIR instruments may be calibrated by statisti- 
cal regression based on purely empirical data 
from a representative training set of samples. 
PLSR [3] is one popular method for this 
purpose. These calibration data consist of 
reasonably precisely known data for both 
chemometric sensor zi and reference method Yi 
from a representative set of training samples 
(objects) oli, q),i = 1,2, . . .,N. 

Preprocessing 

If background knowledge about the nature 
of the relationship between spectral data zi and 

chemical data Yi is available, it is advisable to 
apply this during preprocessing, for instance 
for converting the measurements zi into cor- 
rected spectra xi: 

Xi = g(Zi). (2) 

The purpose is to simplify the subsequent 
statistical regression calibration to estimate the 
predictor function: 

Yi = b(xJ = bMzi)l = f(zi)* (3) 

The goal of the preprocessing is to reduce the 
need for calibration data, to improve the 
statistical precision of the predictor function 
b(), and to simplify the spectroscopic inter- 
pretation of this function and its underlying 
calibration model. 

The preprocessing function g() can involve 
a number of different stages and types of 
transformations. Rather than “black box” 
approaches such as neural net or optimal 
scaling, techniques with distinct spectroscopic 
interpretation are here employed. 

Response linearization 
If general knowledge exists about the 

mathematical shape of the relationship be- 
tween measurements zi and qualities Yi, one 
may apply this knowledge in the preprocessing 
stage in order to simplify the final modelling. 
Changing the measured transmittances T to 
optical density, OD = log(l/T), is here used as 
an example of a useful (although not perfect) 
instrument response linearization. 

Extended multiplicative signal correction 
While many types of spectroscopic selec- 

tivity problems are of an additive nature (e.g. 
absorbance effects of chemical interferents), 
others have a strong multiplicative component. 
Examples of the latter are light scattering 
variation or optical path length variations. If 
these vary uncontrollably from sample to 
sample, it is advantageous to reduce their 
effect in the preprocessing stage. Otherwise 
their multiplicative nature may otherwise 
destroy the subsequent additive PLSR cali- 
bration modelling. 

If the physical and chemical effects in the 
spectra are sufficiently different, they may be 
separated by multivariate statistical modelling. 
One method is the MSC technique [4-61. This 
is now termed “multiplicative signal correc- 
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tion” [2, chap. 71, as a generalization of the 
original term “multiplicative scatter correc- 
tion” [4], since it is also applicable to other 
types of data, e.g. correcting for varying 
amounts of sample applied to a chromatog- 
raphy column. MSC seeks to correct the 
baseline and amplification effects to the same 
“average” level in every spectrum. 

This basic EMSC signal model may be 
extended in different ways, to include, for 
example, wavelength dependencies for ai or b;. 
But the basic EMSC model is presently used, 
as a local simplified approximation to various 
more complicated nonlinear models. The un- 
known parameters ai and bi are now to be 
estimated from the data. 

As outlined in ref. 7 (p. 350) Stark and 
Martens in 1989 developed MSC into the 
extended multiplicative signal correction 

(EMSC) in order to attain a more effective 
separation of chemical and physical effects in 
light spectroscopy. The EMSC method em- 
ploys knowledge about the spectra of the 
analytes and interference effects to improve 
the path length estimation. The method is 
described in detail under Mathematical method 
description. 

Under ideal conditions (Beer’s model), the 
absorbance data X; can be seen as a sum of the 
contributions from the different chemical con- 
stituents (analyte and interferents) with spectra 
K = {kiJ = 1,2, . . .,.J} and concentrations 
C; = {C;jJ = 1,2, . . .,.I}‘: 

X; = klC;l + kzC;z + . . . + kJcd = KC;. (5) 

Spectral interference subtraction 

Spectrum (6) xi may be rewritten as a 
deviation from a reference spectrum - xc, 
which could be, for example, the average of a 
set of empirical spectra: 

When spectral information about the analyte 
and interferents is available, it is possible to 
reduce or eliminate the spectral effects of the 
interferents in the preprocessing stage. This 
further reduces the need for empirical cali- 
bration data. The technique presented here is 
called spectral interference subtraction (SIS) 
and was developed by the authors in conjunc- 
tion with the development of the EMSC. Its 
purpose is to filter out the effects of known 
constituents from the spectral data, with as 
little modification as possible of the effects the 
unknown constituents and phenomena. The 
method is described in detail under Math- 
ematical method description. 

X; = Zo + Kdi. (6) 

This deviation d; represents, in the case of 

absorbance data, the deviations in the analyte 
and interference concentration compared with 
that of the reference sample: d; = ci - lco. 

This yields 

Z; = (~0 + Kd;)b; + la; + e;, 

which can be rewritten 

(7) 

Z; = zob; + Kd;b; + la; + ei. (8) 

Mathematical method description 
Extended multiplicative signal correction. Let 

Z = {zi = 1,2,. . . ,N} be the measured 
spectra of a set of N samples. These data are to 
be corrected into spectra X = {x;,i = 

12, . . .,N} by EMSC. (All vectors are 
assumed to be column vector.) 

Reference spectrum z. is usually chosen as 

the average of a set of spectra z;,i = 

12, . . .,N. Some method (MSC or EMSC) is 
used for estimating ai and b;. 

Once estimated, the actual signal correction 
for converting the measured spectra z; into 
corrected estimates of the unknown desired 
spectra xi [equation (2)] is: 

The spectral model used here is: 

Z; = x;b; + la; + ei, (4) 

where 1 is vector (l,l,l, . . .,l)‘, e; is the 
residual in the model, and where a; represents 
an unknown additive effect (e.g. baseline 
offset) and b; represents an unknown multi- 
plicative effect (e.g. optical path length or light 

x; = (z; - 1a;)lb;. (9) 

Conventional multiplicative signal correction. 
In conventional MSC the estimation of a; and 
b; is done by simply ignoring the term Kdibi in 
equation (8): 

Z; = zob; + la; + e;. (10) 

scattering level). The least-squares solution is then: 
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To avoid wavelength regions where the 
chemical absorbance variations di might in- 
fluence the estimation of Ui and bi, weighted 
least-squares (WLS) estimation is used in 
practice: 

[bi,Ui] = ([ZO l]‘V[zo l])-‘[zO l]‘VZiy (12) 

where V is a diagonal matrix with a weight 
factor for each wavelength. For instance, V 
could have elements vkk = 1 for wavelengths 
to be used, and Vkk = 0 for wavelengths not 
used. 

This MSC pre-treatment can greatly simplify 
the subsequent calibration modelling. How- 
ever, if different chemical constituents in the 
samples have very different absorbance levels, 
additive variations in the spectra due to com- 
position variations are mistakenly treated as if 
they were due to multiplicative effects. In the 
present example, the interferent benzene has 
considerably higher absorbance than analyte 
toluene and interferent xylene in the relevant 
wavelength range. Variations in benzene- 
(toluene + xylene) concentration ratios will in 
MSC be taken as path length variations and 
removed by division. This will introduce errors 
in the subsequent calibration modelling. 

Extended multiplicative signal correction. 
EMSC is designed to allow explicit compen- 
sation for the chemical variabilities by includ- 
ing information about the major analyte and 
interferent spectra in the estimation of Ui and 
bi. In equation (8) the term dibi may be termed 
hi. The spectral model equation (8) rewritten 
as 

Zi = zobi + Khi + 1Ui + ei. (13) 

Ideally, the WLS solution should then be 
attained by including K into equation (12): 

[bi,hi,ai] = ([Zo K l]‘V[% K I])-‘[ZO K l]‘VZi. 

(14) 

However, if the mixture modelling is reason- 
ably complete (data on all major constituents’ 
spectra are sufficiently reliable and included in 
the model), z. will be more or less linearly 
dependent on K and 1. The matrix inversion in 
equation (14) will then be more or less un- 
stable. Therefore it is necessary to replace the 

spectral model (13) by an expression that spans 
the same variability. Expression Khi in 
equations (13) and (14) is replaced by some 
other expression pti: 

zi = qbi + Pti + 1Ui + ei (15) 

[bi,ti,ai] = ([ZO P l]‘V[zo P l])-‘[q P l]‘VZi. 

(16) 

One such approach is to let P be the J - 1 
main eigenvectors obtained by singular value 
decomposition of the J columns in matrix (K - 
1~~). The EMSC could then be seen as an 
extension of the path length correction pre- 
sented by Miller and Naes [7]. 

Another solution is used presently: instead 

of using K = [kbenzene, ktoiuene and kxy~d we 
use P = [PI, ~21, where PI = kbenzene - kxylene 
and p2 = ktoluene - kxylene. Thereby the in- 
version in equation (16) becomes easy. 

Equation (16) is thus used for EMSC esti- 
mation of unknown additive baseline offset ai 
and unknown multiplicative path length coef- 
ficient bi. Equation (9) is finally used for the 
actual conversion of each EMSC input spec- 
trum zi into EMSC output spectrum xi. 

The J - 1 estimated elements in score vector 
ti may now be divided by bi and used as 
information about the concentration variations 
of the modelled constituents. However, the 
mathematical steps required to solve the in- 
version problems above make this a little 
complicated. Such explicit modelling of the 
constituent concentrations is more readily 
done when reformulated as a separate pre- 
processing step termed SIS. 

Spectral interference subtraction. Each ob- 
tained (EMSC-corrected) spectrum is assumed 
to contain contributions from various analytes 
and interferents, as described in equation (5). 
Normally, the subsequent multivariate cali- 
bration regression modelling (e.g. PLSR) 
would pick up and correct for the different 
interference effects, provided the calibration 
data set spanned each of them independently. 
However, if we can estimate and subtract some 
if these interference effects already at the 
preprocessing stage, that reduces the cost and 
improves the interpretability of the subsequent 
PLSR modelling. 

NOW let zi represent a spectrum input to the 
SIS preprocessing [equation (2)]. Note that in 
the present case SIS input Zi is the EMSC 



630 HARALD MARTENS and EDWARD STARK 

output. In the SIS process, these SIS input 
spectra zi are to be converted into SIS output 
spectra xi where certain interferences have 
been filtered out. 

If we know the approximate spectra ki of 
some of the major interferences j = 

172, . . .,J, one may in principle filter their 
effects out from the mixture spectra xi, for 
instance by projecting zi on these interference 
spectra. In practice this is not usually advis- 
able, since parts of the (unknown) analyte 
spectra will also be subtracted in the process. 
This makes the subsequent regression model- 
ling rather difficult to interpret. 

However, when we also know the approxi- 
mate spectra of the analyte itself, then the SIS 
technique allows filtering of these main inter- 
ferents in xi without removing the analyte 
contributions. 

Assume that K consists of both analyte 
spectrum (in this case ktoluene) and the major 
interference spectra (kbenzene and kxylene). 

The ideal additive mixture model in 
equation (5) is now expanded to include a 
residual spectrum ei (noting that input zi now 
represents output xi from the previous pre- 
processing operation): 

Zi = KCi + ei, (17) 

where residual ei reflects unmodelled con- 
stituent effects in Zi as well as non-linearities 
and measurement noise in zi and effect of 
errors in K. 

The SIS modelling consists of WLS solution 
of equation (17), estimating concentrations Ci 

from spectrum Zi, assuming constituent spectra 
K and statistical wavelengths weights diag(V): 

Ci = [K’VK]-‘K’Vzi, (18) 

with 

ei = Zi - KCi. (19) 

Per definition, equation (17) can be written 
out explicitly as a sum of the different con- 
stituents, in this case 

Zi = ktolueneCi,toluene + kbenzeneCi benzene 

+ kxyleneCi,xylene + Ci. ’ (20) 

The subsequent SIS correction consist in 
reconstructing the mixture spectrum with the 
interferents weighted to zero: 

Xi = k tolueneCi.toluene + ei = ktoluene*l*Ci,toluene 
+k benzene*O*Ci,benzene + kxylene*O*Ci.xyenr + Ci. 

(21) 

Expressed in general terms, the SIS correction 
based on equation (17) is: 

xi = KWCi + ei, (22) 

where W is a diagonal matrix with one diagonal 
element for each modelled constituent j = 
1,2, . . .,.I (here 3), and with Wjj = 1 for the 
analyte(s) and Wjj = 0 for the modelled inter- 
ferences. In the present example we have 

W=lOO 
000 
000 

Other weights may also be chosen. One such 

possibility is to use Wjj > 1 for the analyte, in 
order to enhance its contribution in output xi 
relative to the residuals ei. This will probably 
have a strong graphic effect; whether or not it 
improves subsequent multivariate calibration 
further is unclear. Off-diagonal non-zero 
elements may also be used, if the concen- 
trations of certain constituents are known to be 
inter-correlated. 

Calibration Regression 

PLSR [3] is a linear (additive) calibration 
method. That means that the final predictor 
function f() in equation (3) can be summarized 
by the linear formulation 

yi = bo + xib. (23) 

In order to obtain the calibration model 
(b,,b), the spectral data xi are modelled as a 
sum of a few “factors” (mathematically defined 
difference spectra). The composition data yi 
are then modelled as another sum of these 
same factors. This is described extensively in 
the literature, see, for example, ref. 2. 

For linear instruments one expects to find a 
number of factors a = 1,2, . . .,A that 
corresponds to Aexpected, the number of chem- 
ical or physical phenomena affecting the X- 
data. However, the optimal number of factors 
may be lower than Aexpected if the initial 
calibration data set is small and noisy, and it 
may be higher than Aexpected if there are 
unexpected interferents, curvatures, etc. 
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Explicit validation methods are therefore 
used to decide the optimal number of factors, 
A. Full cross validation,’ a conservative statisti- 
cal validation method, is employed here: each 
sample is in turn kept as “secret”, while the 
others are used for calibration; the “secret” 
sample is then’ used to test the predictive 
performance of that calibration model. 

Experimental 

Input data 
Forty-seven known mixtures of the organic 

solvents benzene, toluene and xylene in 
various ratios were prepared. The NIR trans- 
mission spectra were measured for these mix- 
tures, as well as for the three pure solvents, in a 
Guided Wave Model 200-45 process spectro- 
photometer, using a 2-m single-strand optical 
fibre and a transmission probe configuration. 
The transmittance data T were converted to 
optical densities. 

The optical density spectra of the mixtures 
were then modified by adding random “base- 
line” offset and multiplying random “path 
length” scale factors, in order to simulate light 
scattering problems. These modified OD data 
are here regarded as the “raw input spectra”. 

Preprocessing 
Light scattering correction. Traditional 

multiplicative signal correction (MSC) and 
EMSC were performed on the raw input OD 
spectra in order to separate physical and 
chemical effects in the spectra. In the EMSC 
the physical “baseline” offset and the “path 
length” scale factors were estimated in such a 
way that chemical OD differences between the 
three solvents were not mistakenly counted as 
physical effects. The analysis was done using 
the EMSC module (version 1.0) in the quanti- 
tative inference engine toolbox (QUIET) from 
Consensus Analysis AS (Ski Business Park, N- 
1400 Ski, Norway). The QUIET package is a 
set of independent batch-oriented C-programs 
for off- and on-line chemometrics and quali- 
metrics, running under PC DOS, Windows 3.0, 
Unix and VAX VMS. 

Correction for known interferents. The EMS 
treated OD spectra were further simplified by 
SIS. In this analysis the approximate spectral 
contributions due to the interferents benzene 
and xylene were subtracted in such a way as 
not to modify the contributions of the analyte 

toluene and the contributions from unknown 
effects (chemical interactions, residual light 
scattering variations, etc). The analysis was 
done using the SIS module (Version 1.0) in 
QUIET (Consensus Analysis AS). 

Calibration regressions 
The PLSR calibration regressions for 

toluene from the NIR data were performed in 
the UNSCRAMBLER program, Version 3.01, 
from CAM0 AS (Jarleveien 4, Lademoen, N- 
7041 Trondheim, Norway). The computations 
were carried out on an IBM PC. 

Results and Discussion 

Input data: fibre-optic process near infrared 
spectra 

Figure l(a) shows the OD spectrum of the 

analyte, ktolueneT together with the two inter- 
ferents benzene and xylene. The figure shows 
that the spectra are strongly overlapping. 
Wavelength channel 39 (1676 nm) seems to be 
the single most typical wavelength for the 
analyte. 

0. 

I I I I I I I I I 
1600 1625 1650 1675 1700 1726 1750 1776 1800 

Figure 1 
Pure constituent spectra. NIR OD spectrum of the analyte 
toluene (T) and the two interferences, benzene (B) and 
xylene (X). 

Figure 2 shows the NIR OD spectra of some 
representative samples after different prepro- 
cessing, and Fig. 3 shows the corresponding 
univariate and multivariate predictive per- 
formance when calibrating for the analyte 
toluene. 

Raw input spectra 
Figure 2(a) shows the raw input OD spectra 
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Figure 2 
Spectra for solvent mixtures. (a) “Input spectra”, illustrat- 
ing uncontrolled random path length and baseline vari- 
ations; (b) same spectra after EMSC; (c) same spectra 
after EMSC and SIS. 

prior to preprocessing. A large degree of 
variation is evident. Figure 3(a) shows virtually 
zero correlation between the “best” single 

wavelength (channel 39) and toluene concen- 
tration for these data. Figure 3(b) shows that 
with multivariate PLSR calibration these 101 
wavelengths together yielded a clearly im- 
proved predictive ability, but the relationship 
is not satisfactory. 

Extended multiplicative signal correction 
Figure 2(b) shows the same spectra after 

EMSC preprocessing. This normalizes all the 
spectra to an average estimated baseline level 
and an average estimated path length (“light 
scattering”) level. The variability in the spectra 
is now much smaller. Figure 3(c) shows that 
satisfactory predictions can still not be attained 
using only one single wavelength, due to the 
spectral overlap between the analyte (toluene) 
and the interferences (benzene, xylene) and to 
“unknown interferences”. However, when 
using all 101 wavelengths in multivariate PLSR 
calibration [Fig. 3(d)] an excellent predictive 
ability is attained. 

Spectral interference subtraction 
Figure 2(c) again shows the same EMSC 

treated spectra, after SIS preprocessing steps 
to remove additive effects of the known inter- 
ferents benzene and xylene. The variability in 
the spectra is now quite systematic and rep- 
resents mainly increasing levels of the analyte 
toluene (cf. Fig. 1). However, some low- 
toluene samples now show negative OD (as 
opposed to the expected level close to zero). 
This is probably due to non-representativity in 
the SIS component spectra, or to non- 
additivity, for example, caused by constituent 
interactions of some kind. Such unexpected 
spectral phenomena have to be “cleaned up” in 
the subsequent multivariate calibration. 

Figure 3(e) shows that good predictions can 
now be attained with a single wavelength. But 
the single-wavelength calibration is still not 
optimal, due to the spectral overlap between 
the analyte (toluene) and “unknown inter- 
ferences” in the spectra. With all 101 wave- 
lengths combined in multivariate PLSR cali- 
bration [Fig. 3(f)] an excellent predictive abil- 
ity is attained. 

Figure 4(a) shows the prediction variance, as 
estimated by full cross-validation, for the raw 
input OD spectra, the MSC treated spectra, 
the EMSC treated spectra and the EMSC plus 
SIS treated spectra, as functions of the number 
of PLSR factors [i.e. the complexity of the 
calibration model yj = b(xi)]. Figure 4(b) is an 
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Figure 3 
Calibration performances for toluene (abscissa). Left side: traditional univariate calibration, using the “best” single 
wavelength; ordinate, OD at 1676 nm, channel 39. Right side: multivariate calibration, using a combination of four PLSR 
factors; ordinate, predicted toluene concentration as obtained in full cross-validation. Parts (a) and (b) are “Input 
spectra”. (b) Same spectra after EMSC. (c) Same spectra after EMSC and SIS. 

expansion of Fig. 4(a), giving detailed com- in order to obtain reasonable predictive ability, 
parison of the three preprocessing methods. but this yielded rather high predictive error 

Figure 4(b) shows that the unpreprocessed (root-mean-square error of prediction 
spectra (upper curve) contained interference RMSEP = +8.9% toluene) [cf. Fig. 3(b)]. 
problems that the PLSR calibration could not The MSC treated spectra had drastically im- 
handle well. A four-factor model was required proved predictive ability and needed two 
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PLS factors 

PLS factors 

Figure 4 
Predictive performance of calibration models for different 
spectral preprocessing. Abscissa: number of PLSR factors 
(calibration model complexity). Ordinate: average pre- 
diction error for toluene concentration, given as error 
variance in full cross-validation. Upper line-raw input OD 
soectra. Middle curves: OD after MSC and EMSC. Lower 
curve: OD after EMSC and SIS. (b) Expansion of data in 
(a) above. 

factors to give good predictive ability, as 
expected for a three-constituent mixture 
system where the sum of the constituents is 
constant. The EMSC treated spectra gave a 
further improvement. The PLSR loadings for 
MSC and EMSC treated spectra (not shown 
here) were somewhat difficult to interpret, 
since they represent two difference spectra 
between the three solvents. A couple of minor 
factors gave slightly improved predictive ability 
[RMSEP = ?3.2% toluene after four factors, 
cf. Fig. 3(d)]. Other studies have revealed that 
these effects represent inter-constituent inter- 
actions of optical or chemical kind, deviations 
from fully linear instrument response, etc. 

The SIS treated spectra (lower curve) gave 
good predictive ability already after one factor. 
The PLSR loading of this factor (not shown 
here) was virtually identical to the spectrum of 
the analyte itself. Very good predictive ability 
was again attained after, for example, four 

factors [RMSEP = ?3.1% toluene, cf. Fig. 

3(f)& 

Conclusion 

This paper has shown that complicated NIR 
spectra which traditionally would be regarded 
as useless, can yield very good predictive 
ability in multivariate calibration by, for 
example, PLSR. It has also illustrated that data 
preprocessing can be very important, particu- 
larly for data with mixed multiplicative (path 
length) and additive (baseline, spectrally over- 
lapping interferants) effects. 

The MSC and EMSC preprocessing effec- 
tively removed most of the path length and 
baseline effects, allowing the subsequent 
additive PLSR to work well. EMSC gave a 
small, but clear improvement over the tra- 
ditional MSC treatment. This difference is 
expected to be greater in systems where the 
absorbance spectra of the constituents differ 
more widely than in the present case (e.g. for 
mixtures containing water and displaying water 
temperature effects). 

The SIS preprocessing allowed the removal 
of most of the known additive interference, 
making the resulting PLSR model easier to 
interpret. This preprocessing can be advan- 
tageous in situations where it is difficult to 
generate real calibration samples to span the 
full variability of the expected future sample 
qualities, e.g. in on-line process control appli- 
cations. Every mixture spectrum, both in the 
calibration set and in future unknown samples, 
can instead be made “immune” against certain 
expected future interference types by SK 
preprocessing. 

However, it should be noted that for every 
interference corrected for, be it in PLSR or in 
preprocessing, there is a certain price to be 
paid in terms of reduced precision. The mag- 
nitude of this increased noise sensitivity de- 
pends on the degree of overlap between the 
analyte spectrum and the interference spectra 
corrected for. 

NIR spectroscopy has a high potential in 
pharmaceutical and biomedical analysis. It is 
the first analytical technique to benefit fully 
from multivariate calibration. But this type of 
selectivity and reliability enhancement is 
equally applicable to other types of multi- 
channel pharmaceutical or biomedical 
measurements - other types of spectroscopy 
(UV, vis, IR), chromatography, electro- 
phoresis, image analysers - scanners, etc. 
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